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Abstract—Plant’s simulation through Lindenmayer Systems is
a well know field, but most of the work in the area focus on the
growth part of the developmental process. From an artificial life
perspective, it is desired to have a simulation that includes all
the stages of the cycle of life of a plant. That is the reason why
this paper target the last stage and propose a strategy to include
the concept of death through Lindenmayer systems. By using
parametric and context-sensitive Lindenmayer systems in the
modeling and simulation, the semantics of the mentioned concept
can be captured and, thereby, with the proper interpretation, a
graphic result, at a morphological level, can be displayed. A
proof of concept that includes most of the concepts covered is
also given.

Index Terms—Plants simulation, Death of plants, Semantic
death, Lindenmayer systems.

I. INTRODUCTION

Since man became aware of him and understood that it
was a being with life and not like several inanimate objects
around him, the study of life began. In order to compre-
hend what was life, initial studies were conducted directly
on living beings. However, interest for studying life from
another perspective has emerged relatively recently. This new
approach was called Artificial Life, a term coined in 1987 by
Christopher Langton[1] (but it goes back even earlier[2]). This
research area focuses on the study of artificial beings through
simulation models.

As in the study of traditional life in which there are two
major areas of interest, i.e. animal life and vegetal life, the
same is true about the research of artificial life that can be
divided or categorized into different areas of study. Thus, there
is also a topic in the study of artificial plants in which models
are created representing a plant species and these models
contain features that are of interest mainly for botanists and
biologists, and other researchers.

In particular, in the last few decades[3], there has been an
interest in recreating the process of plant growth[4]. Being
more specific, the morphological representation through for-
mal systems of the mentioned process had acceptable success.
However, as far as we know, the existent studies focus only
on the birth, growth and reproduction of the plant, but there
is a stage missing for the completion of the life cycle, i.e.
death. Research on the simulation of this last stage is of great
importance in order to have a complete model of an artificial
plant.

In this paper the usage of Lindenmayer systems (L-systems)
is proposed, with some of its extensions, to incorporate the
concept of death into the simulation of the developmental
process of a plant, in the context of its morphology, as
well as incorporating some of the biological features that
show real plants in their growth. The focus is primarily on
the additions needed to the formal system, at a semantic
level, to add the concept of death. Nevertheless, a visual
representation is possible, in two or three dimensions, using
the same techniques of other papers.

If the concept of death can be successfully incorporated
in the modeling of plants, this could have a positive impact
on biological virtual experimentation. As a side effect, the
resulting techniques can be useful in other areas like serious
games or architectural design.

In the following sections, a review of the main ideas that
exists in the state of the art is given and that are relevant
on the different topics that this research covers. Once that
the existing methodologies are explained in section II, a
detailed description of the approach taken in this paper is
given in section III which will incorporated death in a
novel way. There follows, in section II, some examples of
models developed that contains the features mentioned with
its description. Finally, in section V some conclusions about
this work are given.

II. STATE OF THE ART

The relevant topics for this paper are, essentially, two: the
formalism established by a biologist plant’s cells development;
and a mechanism to provide a graphical interpretation to the
mentioned formalism. A summary of these topics follows.

A. Lindenmayer systems

Aristid Lindenmayer was a Hungarian biologist who sought
to establish a formalism that would describe the process of
development of some plant cells[5]. The resulting formal-
ism, which is a formal language but including parallelism
inherently, it was called Lindenmayer Systems in honor of
its creator. This L-systems are formal languages but do not
share the classical hierarchy described by Chomsky[6] because
this systems are parallel by nature: instead of processing one
symbol at a time, all the symbols that can be processed in the
string are translated according to the given rules. For a formal



analysis of L-systems [7] can be consulted. A diverse variety
of L-systems have emerged but only four are of interest for
this paper.

1) Deterministic L-Systems: The most simple form of L-
Systems are the deterministic ones[8]. Formally, a determinis-
tic L-System is a triplet G = 〈V, ω, P 〉 where V is the alphabet
of the system, ω ∈ V + is the axiom and P ⊂ V × V ∗ is a
finite set of production rules (or rewrite rules).

2) Parametric L-Systems: Parametric L-systems[9] are an
extension to L-systems, with the possibility to use parameters
in the rewrite rules. Formally: GΣ = 〈V,Σ, ω, P 〉, where V
is the alphabet of the system, Σ is a finite set of formal
parameters, ω ∈ (V × R∗)+, is a nonempty parametric word
called the axiom, and P ⊂ (V ×Σ∗)× ζ(Σ)× (V × ξ(Σ))∗ is
a finite set of production rules. The sets of all valid logic and
arithmetic constructions with parameter Σ are denoted ζ(Σ)
and ξ(Σ) respectively.

3) Stochastic L-Systems: Stochastic L-systems[10] feature
randomness in the production rules, and thereby generate
flexible systems for modeling non-deterministic processes.
Formally, a stochastic L-systems is a tuple Gπ = 〈V, ω, P, π〉,
where V is the alphabet of the system, ω ∈ V + is the
axiom, P ⊂ V × V ∗ is a finite set of production rules, and
π : P → (0, 1] is a function called probability distribution.
It is assumed that, for each symbol a ∈ V , the sum of the
probabilities of the productions whose predecessor is a equals
to 1.

4) Context-sensitive L-Systems: The formal definition of
context-sensitive L-systems[8] is similar to the deterministic
one with the exception that the production rules have the form
al < a > ar → χ, where a (known as strict predecessor)
produce the word χ if, and only if, a is preceded by al and
followed by ar, such that al and ar make the left and right
context of a in this production. It is trivial to generalize the
definition such that, instead of the context being comprised
by a single letter, any of the to context is made by a word of
length k y l, respectively.

It is important to note that such systems can coexist with
deterministic L-systems (a production with one predecessor).
In order to avoid conflicts between these two types of L-
systems, a higher priority is given to the rules of context-
sensitive ones, such that if two rules can be potentially applied
to a symbol, the deterministic one will not be used.

B. Graphical representation of L-Systems

Associated with L-systems, it exists a mechanism to draw
the words generated by the grammars[11]. This mechanism
is commonly called “turtle interpretation”, which takes the
idea from the Logo programming language[12], in which each
word’s symbol (a letter) that is being interpreted graphically
has a meaning for the turtle that takes it as an instruction.
Typical instructions are: advance some distance to the front
and draw, or not, a line under its way; turn certain degrees in a
particular direction; do nothing; among others. There are, also,
some symbols that do not have a graphical interpretation but
are used as auxiliary commands for the interpreter, like push

Fig. 1: Basic example of what can be achieved with L-Systems
and the turtle interpretation.

Fig. 2: More complex examples of plant simulations by using
formalisms.

or pop the position in a stack. Under this scheme it is possible
to generate basic figures, but it’s powerful enough to draw, at
a structural level, a plant as shown in figure 1. Similarly, it
is possible to extend the interpretation of the turtle to more
complex structures or 3D environments as shown in figure 2.

III. CONCEPT OF DEATH IN PLANT SIMULATION

Most of the approaches to plant simulation through L-
systems focus on the growth process but it is equally important
to be able to model the process of death in order to have a
complete model of plant. In this section, the approach is to
suggest a mechanism to capture the concept of death and,
therefor, be able to create a visual representation of that
process. For this purpose, a detailed description is given of the
formal process that lead to the death semantics in L-systems.

A. Semantic death

In L-systems, each symbol of the alphabet used represents
(has a meaning) a part of the plant (e.g. roots, branches, leafs),
or a hint to the graphical representation (e.g. turn, draw, color,
position). Using the same approach, it is being proposed to add
the concept of death through the association of this meaning
to a symbol (or a set of symbols) of the alphabet.

B. Death in deterministic L-systems

For the case of deterministic systems, it is sufficient to prove
that there is a set of rules that allows reaching the desired



string. Therefore, it is proposed to use the following simple
L-system that later will be modified to incorporate the concept
of death:

Let G = 〈V, ω, P 〉 where V = {F,+,−, [, ]} is the alpha-
bet, ω = F is the axiom, and P = {F → F [+F ]F [−F ]F}
is the set of production rules. This L-system, after applying
a graphic interpretation (turtle interpretation), generates a
branching structure similar to a plant.

If this L-system G is modified as follows:
Let G = 〈V, ω, P 〉 where V =

{F1, F2, ..., Fn,M,+,−, [, ]}, n ∈ N is the alphabet, for
a given n, ω = F is the axiom, and

P =

{
Fi → Fi+1[+Fi+1]Fi+1[−Fi+1]Fi+1, 1 ≤ i < n

Fn →M}

is the set of production rules.
This L-system will generate the same branching structure

as the unmodified one, but the L-system will iterate only n
times, after which all F symbols will start to translate to
M symbols and will not evolve later on. The resulting string
can be given the interpretation of a dead plant. However, as
it can be easily seen, the modification done only had the
effect of assigning a maximum age of life to the system,
this because only deterministic rules are possible in this kind
of systems. Nevertheless, the goal was achieved although the
dead behavior is not similar to the real one. With other kinds
of L-systems, as will be explained in the next sections, this
situation will be remedied.

C. Death in parametric L-systems

For this kind of L-systems will be proceed in the same
manner as the exercise above, but using the advantages that
give us parameterization:

Let GΣ = 〈V,Σ, ω, P 〉 where V = {F,+,−, [, ]} is
the alphabet, Σ = {t, v} is the set of formal parameters,
ω = F (t, n), n ∈ N for a given n, is the axiom, and
P = {F (t, v) → F (t, v)[+F (t, v)]F (t, v)[−F (t, v)]F (t, v)}
is the set of production rules. This L-system, after being
graphically interpreted, creates the same branching structure
as the deterministic one.

However, if this L-system GΣ is modified as follows:
Let GΣ = 〈V,Σ, ω, P 〉 where V = {F,M,+,−, [, ]} is the

alphabet, Σ = {t, v} is the set of formal parameters, ω =
F (1, n), n ∈ N for a given n, is the axiom, and

P =

F (t, v) : t < v → F (t+ 1, v)[+F (t+ 1, v)]F (t+
1, v)[−F (t+ 1, v)]F (t+ 1, v)

F (t, v) : t ≥ v →M(t, v)

is the set of production rules.
The resulting L-system will generate the same branching

structure as the unmodified one, but with the existence of the
two parameters will help in bringing a semantic death to the
system. On the one hand, the parameter t will help counting
how many iterations have lived this particular node. On the
other hand, the parameter v will help to assign a maximum

lifetime to this kind of node. So that, when the node reaches
the specified lifetime, the node becomes a death kind of node.

The net effect obtained is similar to that of deterministic L-
systems. However, the construction of the system was much
simpler since it was not needed to specify a given finite
quantity of symbols for the alphabet. It was just enough to
add the M symbol associated with the death concept and use
a strategy through the parameters to be able to reach it.

D. Death in stochastic L-systems

Will continue with the same exercise as before, but now
applied to stochastic L-systems. As before, we will start with
a simple L-system:

Let Gπ = 〈V, ω, P, π〉 where V = {F,+,−, [, ]} is
the alphabet, ω = F is the axiom, and P = {F 1−→
F [+F ]F [−F ]F} is the set of production rules. The graphical
interpretation of this system is the same branching structure
as the deterministic one.

However, if this L-system Gπ is modified as follows:
Let Gπ = 〈V, ω, P, π〉 where V = {F,M,+,−, [, ]} is the

alphabet, ω = F is the axiom, and

P =

{
F

0.90−−→ F [+F ]F [−F ]F

F
0.10−−→M

is the set of production rules.
With the given modification, each symbol of the structure

will now have a chance of 90% to reproduce normally, and a
chance of 10% to become a dead node. This strategy, even if it
manages to incorporate the concept of death, bring a problem
with it since, randomly, exists simultaneously alive and dead
nodes in different positions of the branching structure, result-
ing in an inconsistent graphical (and biological) interpretation.
This situation will be solved with the following kind of L-
systems.

E. Death in context-sensitive L-systems

Following the same line of thought, this section will start
describing a simple context-sensitive L-system.

Let G = 〈V, ω, P 〉 where V = {F,N} is the alphabet, ω =
NFFFF is the axiom, and P = {N < F → N,N → F}
is the set of production rules. This L-system has the behavior
of moving the N symbol to the end of the string. (By the
way, this mechanism may serve as a simulation of passing
biochemical signals in the plant.)

But the same system with a slight variation, is sufficient to
incorporate the concept of death:

Let G = 〈V, ω, P 〉 where V = {M,F} is the alphabet,
ω = MFFFF is the axiom, and P = {M < F → M} is
the set of production rules. The only difference is the change
of the alphabet, to follow our convention, and the elimination
of a production rule. With these changes, now the L-system
proposed can be interpreted by saying that once a dead node
exists in the system, in the next iteration will cause the node
that follows it also to become a dead node. For example, from
a biological perspective, if the root is dead then there will be



a lack of passage of nutrients that will result in dead of the
upper nodes.

IV. PROOF OF CONCEPT

In this section, a more elaborated example will be given to
serve as a proof of concept of the proposal mentioned above.
For this purpose, a mix of the L-systems described will be
used. After that, a different example is given in order to show
one possible visual interpretation. Finally, some other potential
uses to the mechanism described are mentioned.

A. Symbolic example

Although a formal definition for mixed L-systems will not
be given, intuitively one can think of them as the union of the
different types presented so far. The only consideration to take
into account is the assignment of priorities to avoid ambiguity
in the application of rewrite rules.

To illustrate a mixed L-system, and including the concept
of death in a more elaborate way, the following system is
presented:

Let GΩ = 〈V,Σ, ω, P 〉 where V = {S,N,M} is the
alphabet, Σ = {t, v} is the set of formal parameters, ω = S
is the axiom, and the set P of production rules contains the
following elements:

p0 : S → N(1, 1),

p1 : N(v, t)
70%−−→ N(v + 1, t+ 1),

p2 : N(v, t)
15%−−→ N(v + 1, t+ 1)[+N(1, 1)],

p3 : N(v, t)
15%−−→ N(v + 1, t+ 1)[−N(1, 1)],

p4 : N(v, t) : v = (70% · V MAX)→ N(v + 1, t+ 1)N(1, 1),

p5 : N(v, t) : v ≥ V MAX → N(v, t+ 1),

p6 : N(v, t) : t > T MAX →M(v, t+ 1),

p7 : M(v, t) < N(v, t)→M(v, t),

p8 : M(v, t)→M(v − 1, t+ 1),

p9.1 : M(v, t) : v ≤ 0→M(0, t+ 1),

p9.2 : M(v, t) : v ≤ 0→ ε,

In the described L-system, the alphabet’s symbols have the
following meaning: the symbol S has the meaning of being the
seed of a plant, the symbol N is any node that conforms a part
of plant, and the symbol M is a dead node. The parameters
have the same meaning as in section III-C. The axiom is
composed of a single seed. The three constants used in the
production rules are: V MAX is the maximum vitality that
a node can have, a value of 100 will be desired so it can be
interpreted as a percentage; T MAX is the maximum lifetime
that any node of the plant can achieve, this value must be
greater than V MAX to have a consistent system, two or
three times V MAX would be suitable for simulation; and,
finally, the value of 70% is an arbitrary limit that establish the
point where a node can reproduce and create a new node. The
vitality concept mentioned is a measure of the healthiness of

a node. Finally, the explanation of the importance of each of
the rewrite rules of this L-system is described below:

• Rule p0 is the birth moment of the plant. It is in this step
that a seed becomes a live plant (or a node of that plant).
The node starts with a vitality of one and, since it is the
first iteration of existence, its lifetime is also one.

• Rule p1 to p3 are stochastic rules that suggest that most of
the times (70% of the times) the node will simply increase
its vitality as well as its lifetime. However, there exists a
30% chance that the node will create a ramification (15%
chance to left, and 15% to the right).

• Rule p4 is a parametric way to establish that, once a
node have reach 70% of the maximum vitality, it is time
to reproduce and create a new node with vitality and
lifetime equal to one, and that new node will be a child
of the current node.

• Rule p5 is there to avoid increasing node’s vitality above
the maximum possible. However, node’s lifetime keeps
increasing with each iteration.

• Rule p6 is the one that kills a node once it has reach the
maximum lifetime established for the nodes. From this
iteration on, this node can be interpreted as being in a
decomposition process.

• Rule p7 indicates that once the node that precedes it is in
a dead state, then this node must also die. The semantic
reasons for this may vary but, for example, it could be
mentioned the null transmission of nutrients from the
parent as a possible reason.

• Rule p8 handles the diminution of the vitality parameter
of the node. This value allows an interpretation of the
rottenness of this node.

• Finally, rule p9.1 is responsible for maintaining the vi-
tality parameter in zero (avoiding its decrement) for a
given node. It is important to note that the dead node
will remain in the generated string. Alternatively, rule
p9.2 can be used which, instead of leaving the dead
node in the string, the symbol will be substituted with
the empty symbol ε (that is equivalent to removing the
symbol from the string). These last two rules cannot
coexist simultaneously in a grammar applied to the same
symbol. It must be chosen one approach or another. Or
apply for different node types, for example, you keep the
dead nodes for trunk parts (these do not disappear), and
disappear the nodes associated with leaves (these indeed
decompose relatively soon).

B. Simple graphical example

For sake of completion, in figure 3 an example is given to
graphically illustrate how a simple branching structure dies. In
image 3a a plant is born, passing from a seed to a small set
of live nodes representing the trunk and just one branch. From
image 3b to 3d, the plant grows to its maximum: the oldest
nodes have reached their maximum lifetime. From image 3e
to 3g the plant is in its decomposition process: each live node
becomes a dead node and the vitality parameter of each one
is continually decreasing. Finally, in image 3h all the nodes



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: Proof of concept for a plant that dies.

have zero vitality meaning a complete death. In the example,
it was decided to let the branches’ nodes to remain instead of
disappearing from the image. The vitality parameter was used
for determining the thickness of each of the segments of the
plant: a thick segment is healthy segment, and a thin one is
not healthy. This is a naive interpretation but it’s trivial to also
use colors or modify other aspects of the structure.

The image was created with OpenAlea platform[13] and the
PlantGL[14] and L-Py[15] modules.

C. Other possibilities

As it was shown in section III-C, by using parametric L-
systems and a value that express the lifetime of a node, a rule
can be triggered that converts a living node to a dead one.
The same can be done to express other biological concepts
and that will imply the plant’s dead (directly or indirectly).

For example:
• If it is proposed to have a variable that represents

water availability in the root of a plant, then the rule
pwater : R(v,W ) : W < 0→ R(v − 1,W ) will give the
meaning of root R not being hydrated (W < 0, water
not available) and therefore diminishing its vitality (and
eventually dying).

• If it is proposed to have a variable that represent sunlight,
then the rule pleaves : L(v, S) : S < 0 → L(v − 1, S)
will imply that a leave L is not receiving sunlight (S < 0)
with its associated negative effect.

Other possibilities include considering soil quantity for the
roots, temperature for each node, nutrients available in the
environment and so on.

V. CONCLUSION

The purpose of this paper was to provide a mechanism
to include the concept of death in the simulation of plants
through L-systems. With this achievement, plants’ cycle of
life is complete. In section III, a systematic process was used
to show that it was possible to have the semantic meaning
of dead in four different kinds of L-systems. Even though

there could be inconsistencies, from a biological perspective,
in the developmental process of the simulation of a plant, those
issues could be tackled by using a mix of the different kind
of L-systems. The key point for the successfully inclusion of
death in this kind of simulations is to appoint one, or more,
of the symbols of the alphabet with the meaning of death, and
therefor have a set of auxiliary production rules that create the
transition from a living node to a dead one in a convenient
step so that it is congruent in a biological context. Also, a
simple graphical interpretation of a dying plant was shown.
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